Behavioral Characterization of Individual Olfactory Memory Retrieval in Drosophila Melanogaster

نویسندگان

  • Marie-Ange Chabaud
  • Thomas Preat
  • Laure Kaiser
چکیده

Memory performance depends not only on effective learning and storage of information, but also on its efficient retrieval. In Drosophila, aversive olfactory conditioning generates qualitatively different forms of memory depending on the number and spacing of conditioning trials. However, it is not known how these differences are reflected at the retrieval level, in the behavior of individual flies during testing. We analyzed conditioned behaviors after one conditioning trial and after massed and spaced repeated trials. The single conditioning produces an early memory that was tested at 1.5 h. Tested at 24 h after training, the spaced and the massed protocols generate two different forms of consolidated memory, dependent, or independent of de novo protein-synthesis. We found clearly distinct patterns of locomotor activity in flies trained with either spaced or massed conditioning protocols. Spaced-trained flies exhibited immediate and dynamic choices between punished and unpunished odors during the test, whereas massed-trained flies made a delayed choice and showed earlier disappearance of the conditioned response. Flies trained with single and spaced trials responded to the punished odor by decreasing their resting time, but not massed-trained flies. These findings demonstrate that genetically and pharmacologically distinct forms of memory drive characteristically different forms of locomotor behavior during retrieval, and they may shed light on our previous observation that memory retrieval in massed-trained flies is socially facilitated. Social interactions would enhance exploratory activity, and then reduce the latency of their conditioned choice and delay its extinction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thirty years of olfactory learning and memory research in Drosophila melanogaster.

The last 30 years have witnessed tremendous progress in elucidating the basic mechanisms underlying a simple form of olfactory learning and memory in Drosophila. The application of the mutagenic approach to the study of olfactory learning and memory in Drosophila has yielded insights into the participation of a large number of genes in both the development of critical brain regions as well as i...

متن کامل

Social Facilitation of Long-Lasting Memory Retrieval in Drosophila

Recent studies demonstrate that social interactions can have a profound influence on Drosophila melanogaster behavior and cuticular pheromone patterns. Olfactory memory performance has mostly been investigated in groups, and previous studies have reported that grouped flies do not interact with each other and behave in the same way as individual flies during short-term memory retrieval. However...

متن کامل

Genetic Variability and Robustness of Host Odor Preference in Drosophila melanogaster

Chemosensory stimuli play a crucial role for host selection in insects, including the fruit fly Drosophila melanogaster. Drosophila has been instrumental in unraveling the neurological basis of olfactory processing in insects. Basic knowledge regarding chemical ecology and thorough studies of olfactory preferences are still lacking to a great extent in D. melanogaster, however. We have characte...

متن کامل

Dynamics of memory-guided choice behavior in Drosophila

Memory retrieval requires both accuracy and speed. Olfactory learning of the fruit fly Drosophila melanogaster serves as a powerful model system to identify molecular and neuronal substrates of memory and memory-guided behavior. The behavioral expression of olfactory memory has traditionally been tested as a conditioned odor response in a simple T-maze, which measures the result, but not the sp...

متن کامل

Anatomy and behavioral function of serotonin receptors in Drosophila melanogaster larvae

The biogenic amine serotonin (5-HT) is an important neuroactive molecule in the central nervous system of the majority of animal phyla. 5-HT binds to specific G protein-coupled and ligand-gated ion receptors to regulate particular aspects of animal behavior. In Drosophila, as in many other insects this includes the regulation of locomotion and feeding. Due to its genetic amenability and neurona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2010